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Abstract
The specific heat oscillation in the mixed state of type II superconductors is
studied theoretically when rotating a field within a plane containing a gap
minimum and maximum. The calculations are performed microscopically by
solving the quasi-classical Eilenberger equation for vortex lattices. The field
dependence of the oscillation amplitude can discriminate between the nodal and
anisotropic gap with a finite minimum and the oscillation phase gives the gap
minimum position on the Fermi surface. These also provide a way to separate
out the anisotropic behaviour due to the Fermi velocity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There has been much attention focused on exotic superconductors, including high Tc cuprates
and heavy Fermion materials, in recent years. In addition to the spin structure or parity of
the Cooper pair, the orbital function or the gap structure on the Fermi surface is decisive
to characterize its superconductivity. These studies are expected to lead to a new pairing
mechanism. Even in conventional superconductors the energy gap can vary, depending on the
position on the Fermi surface. The degree of the anisotropy in the gap function is an important
factor in understanding the superconductor in question. To distinguish a nodal superconductor
from an anisotropic one with a finite minimum gap is of particular importance because the gap
function cannot change its sign in the latter while it can in the former. Also it is crucial to
determine the maximum and minimum gap positions on the Fermi surface.

It is now widely recognized that the zero-energy density of states (ZEDOS) sensitively
reflects the gap structure, which is probed by a variety of experimental methods such as specific
heat, thermal conductivity or scanning tunnelling spectroscopy. This is particularly true for
physical quantities in the mixed state of type II superconductors. Induced vortices under an

0953-8984/05/507971+10$30.00 © 2005 IOP Publishing Ltd Printed in the UK 7971

http://dx.doi.org/10.1088/0953-8984/17/50/015
mailto:pedjam@cg.ac.yu
http://stacks.iop.org/JPhysCM/17/7971


7972 P Miranović et al

applied field carry a certain amount of ZEDOS around each vortex core which depends on the
gap structure [1–3]. The Sommerfeld coefficient γ (B) as a function of magnetic induction B ,
which is nothing but ZEDOS induced by vortices, is found to be one of the physical quantities
to reveal the gap topology. In fact, there have been several γ (B) experiments [4–9] for example
on 2H-NbSe2, V3Si, Nb3Sn or CeRu2. We recently demonstrated that precise measurement
γ (B) at low field gives rise to indispensable information on the gap anisotropy [10]. In
order to better characterize the gap structure it is urgent to provide further ways to analyze
experimental data. For example, anisotropic behaviours in a superconductor could come from
two main sources. One is the gap structure itself and the other is the Fermi velocity anisotropy
due to band structure. It is often the case that these two kinds of anisotropy are mixed up and
difficult to separate out individually, leading to an ambiguous conclusion for the gap structure.
Thus we are required to devise some method to disentangle these two anisotropy effects.

Recently the angle-dependent specific heat experiments for the mixed state in several
superconductors LuNi2B2C [11], CeCoIn5 [12] and Sr2RuO4 [13] have been performed to
yield a characteristic oscillation pattern in γ (B). A few per cent oscillation amplitude relative
to the total in these experiments is generally consistent with the theoretical estimate [3] for
nodal superconductors or strongly anisotropic gap superconductors. However, it remains open
to distinguish between them. Specifically, it is reported that the oscillation amplitude becomes
vanishing toward B → 0 in Sr2RuO4 [13] while it remains a finite value in LuNi2B2C [11]
and CeCoIn5 [12]. It was speculated that in the former either the gap structure has a finite
minimum gap or the gap in the minor band may mask the oscillation in lower fields. Thus we
need to know precise behaviour of the field-dependence of the oscillation amplitude for the
two cases.

The purpose of the present paper is to examine the oscillation amplitude of the angle-
dependent Sommerfeld coefficient γ (B) when B rotates within a plane containing the gap
minimum and maximum for several typical gap topologies, including line and point node
superconductors and a superconductor with a finite minimum gap. We also study the oscillation
behaviour of γ (B) for the isotropic gap case with the anisotropic Fermi velocity. It turns out
that this anisotropy also yields a substantial specific heat oscillation under field rotation, but we
will provide information on how to distinguish it from the gap anisotropy case. The existing
data of the γ (B) oscillation experiments on LuNi2B2C, CeCoIn5 and Sr2RuO4 are analysed in
this regard. After a brief introduction to a quasi-classical framework to show how to calculate
the ZEDOS for various situations, we describe the results of the ZEDOS oscillations to examine
the differences between node versus nodeless gap cases in section 3 and also show the results
for anisotropic Fermi velocity in section 4. Section 5 is devoted to the point node case in
comparison with the line node case to supplement the above analysis. In section 6 we give a
summary and discussions on the existing data. All computations are done assuming a Fermi
sphere.

2. Quasi-classical theory and ZEDOS

The amplitude of the specific heat oscillations appears to be very small, just a few
per cent [11–13] as mentioned before. The smallness of the effect necessitates the use of
numerical solutions of Gorkov’s microscopic equations of superconductivity to accurately
estimate the specific heat amplitude. The quasi-classical approximation of Gorkov’s equations,
that we solve numerically here, is good as long as the condition kFξ � 1 is met. Here, k−1

F is
of the order of the atomic length, and ξ is the coherence length. Pairing interaction between
electrons is modelled as V (v,v′) = V0�(v)�(v′). This greatly simplifies the analysis, since
pairing potential in this model can be written as �(r,v) = �(v)�(r). The orbital part of the
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pairing potential, �(v), we simply call the gap function. The Eilenberger equations then read
as (h̄ = 1)

[2ω + vΠ] f (ω, r,v) = 2�(r,v)g(ω, r,v), (1)

[2ω − vΠ∗] f †(ω, r,v) = 2�∗(r,v)g(ω, r,v). (2)

Here Π = ∇ + (2π i/�0)A is the gauge invariant gradient, A is the vector potential, �0 is
the flux quantum and v = v(kF) is the Fermi velocity defined as v(k) = ∇k E(k), with E(k)

being the energy function of the electrons in the band; the Fermi wavevector kF can be found
from the equation E(k) = EF; ω = πT (2n + 1) with integer n is the Matsubara frequency, g
and f are the normal and anomalous Green’s function and f †(ω, r,v) = f ∗(ω, r,−v). The
normalization condition for the Green’s functions is g2 + f f † = 1.

The selfconsistency equations for the gap function and current density are

�(r,v) = 2π N0T
ωD∑

ω>0

∫

FS
d2 k ′

FV (v,v′)ρ(k′
F) f, (3)

j = 4π i|e|N0T
∑

ω>0

∫

FS
d2 kFρ(kF)vg. (4)

Here,
∫

FS is the integral over the Fermi surface, ωD is the cut-off frequency, N0 is the total
density of states for one spin at the Fermi surface in the normal state

N0 =
∫

FS

d2kF

(2π)3

1

|v| , (5)

and ρ(kF) is the angle resolved density of states at the Fermi surface:

ρ(kF) = 1

(2π)3 N0

1

|v| , (6)

normalized so that∫

FS
d2 kFρ(kF) = 1. (7)

Density of states N(r, E) is defined as

N(r, E) = N0

∫

FS
d2kF Re g(iω = E + iδ, r,v)ρ(kF). (8)

We are interested in the low temperature zero-energy density of states (ZEDOS) N(r, E =
0). This is because in the limit of small temperatures, T −→ 0, the ratio of the specific heats
in the superconducting state Cs and the normal state Cn is given by

lim
T →0

Cs

Cn
= N(r, E = 0)

N0
. (9)

Here N(r, E = 0) is the spatially averaged ZEDOS in the superconducting state. In our
calculation we set T = Tc/10. Since ZEDOS and specific heat are proportional at low
temperatures we use these two terms concurrently throughout the text. The numerical
procedure for solving quasi-classical equations of superconductivity is described in [14].
Magnetic field is measured in units �0/(2π R2

0), where �0 is the flux quantum, and R0 =
0.882ξ0 (ξ0 is the BCS coherence length).

The angular dependence of ZEDOS is already studied numerically for some typical cases
of nodal gap function: 3D d-wave, polar state and axial state [3]. The case of two-dimensional
d-wave superconductors is well studied within the Doppler shift approximation, for the clean
case [14–16], and also ZEDOS is studied by using the high field approximate solution of
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Figure 1. Ratio R = N(E =
0, ϕ = 0)/N(E = 0, ϕ = π

4 ) of
minimum and maximum ZEDOS for
fields rotating in the basal plane of the
crystal. Full circles are for anisotropy
parameter a = 0.5, while full squares
are for the 2D d-wave superconductor
(a = 1).

the Eilenberger equations [18–22]. The focus in that study was on the field dependence of
ZEDOS for characteristic magnetic field directions. Just to recall, as one rotates the magnetic
field from the gap node direction toward the gap maximum direction, ZEDOS increases in
low field, while it decreases in fields near Hc2. In other words, the specific heat oscillation
amplitude changes sign with increasing field. In this paper we compare the ZEDOS oscillation
amplitude for nodal and nodeless superconductors in the limit of low fields. Along with the
nodal gap structures already studied in [3], we also present results for some other typical cases
known in the literature.

3. Nodal gap versus nodeless gap

In order to distinguish the nodal gap superconductor from the nodeless superconductor with a
finite minimum gap, we examine the following model for the gap structure:

�(ϕ, θ) = �0(a)
√

1 + a cos 4ϕ (10)

with ϕ the polar angle and θ the azimuthal angle in polar coordinates. The parameter a
measures the degree of anisotropy. For a = 0 the gap function is isotropic, while for a = 1 the
gap function reduces to the two-dimensional (2D) version of dx2−y2 -wave superconductivity.
We choose the prefactor �0(a) so that the average of �2 over the Fermi surface is unity,
independent of a. ZEDOS is calculated for fields rotating in the basal plane with θ = π/2.
Only two field directions are of interest, B along the gap minimum (ϕ = (2k + 1)π/4), and
B along the gap maximum (ϕ = kπ/2). Here, k is integer. We performed the calculation for
two anisotropy parameters: a = 0.5 and a = 1. In both cases, low field ZEDOS is always
minimum when the magnetic field is oriented along the gap minimum (node) and vice versa.

In figure 1 the ratio R = N(E = 0, ϕ = 0)/N(E = 0, ϕ = π
4 ) of maximum and minimum

ZEDOS, for a field rotating in the basal plane, is plotted for both anisotropy parameters. As
is clear from figure 1, there is a striking difference in the low field dependence of ratio R
for the nodal a = 1 and nodeless a = 0.5 superconducting gap. Namely, for the nodal gap
case (a = 1) there is a finite amplitude ZEDOS oscillation (R �= 1) towards B → 0. This
is contrasted with the nodeless gap case (a = 0.5) where R becomes unity at lower fields,
showing a maximum at the intermediate field region Bmax. This means that the specific heat
oscillation diminishes there. The field Bmax comes from the physical reason that at B < Bmax
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Figure 2. Ratio R = N(E = 0, ϕ =
0)/N(E = 0, ϕ = π

4 ) of minimum
and maximum ZEDOS in the case of
anisotropic Fermi velocity modelled by
equation (11).

the spatial extension of the ZEDOS is confined to each vortex core region, yielding a more
or less isotropic ZEDOS landscape. This ZEDOS feature does not cause the specific heat
oscillation in this lower field. The spatial extension of the ZEDOS landscape depends on the
size of the minimum gap because the gap acts as a potential for quasi-particles; that is, the zero-
energy quasi-particles are strongly confined and localized near each core. Thus Bmax signals
the characteristic field where the localized zero-energy quasi-particles begin overlapping and
tends to become smaller as the minimum gap decreases. Since in the nodal gap case the spatial
extension of the ZEDOS is extended to infinity, Bmax approaches zero, indicating that R stays
constant towards smaller fields.

4. Anisotropic Fermi velocity

We analyse the other type of anisotropy. The superconducting gap is assumed to be isotropic,
or to have the same value all over the Fermi surface, but the Fermi velocity itself is anisotropic.
The amplitude of the Fermi velocity on the Fermi sphere is modelled as

v(ϕ, θ) = v0(b)(1 + b cos 4ϕ). (11)

The parameter b measures the degree of anisotropy. For convenience the prefactor v0(b)

is chosen so that the density of states in the normal state is independent of b. Fourfold
variation of the Fermi velocity in the basal plane is quite a simple model but will suffice for
our purpose. Even in this hypothetical case with the isotropic gap and the anisotropic Fermi
velocity, ZEDOS, and thus specific heat, depend on magnetic field direction. In figure 2, we
plot the ratio R of minimum and maximum ZEDOS as a function of magnetic field. The
anisotropy parameter b = 0.5 is used in the calculation. The ratio R between maximum and
minimum ZEDOS is of the order of a few per cent. This is the same order of magnitude as
in the above gap anisotropy cases. This is also the same order of magnitude as observed [11]
in LuNi2B2C. This warns us that the effect of the Fermi surface structure on the specific heat
oscillation cannot be neglected in intermediate fields. However, it is seen from figure 2 that
extrapolation of the maximum/minimum ratio R to B = 0 gives R = 1, i.e. disappearance of
specific heat oscillation. This is qualitatively the same behaviour as seen in the anisotropic
gap case with a finite minimum gap, shown in figure 1. Physically this is due to the spatial
extension of the zero-energy quasi-particle state. In the Fermi velocity anisotropy case ZEDOS
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is confined to each core in a rather isotropic gap manner. Thus to induce the oscillation finite
field is needed, above which, because of the overlapping of the zero-energy quasi-particles,
ZEDOS begins to exhibit an oscillation.

It is also noticed that in the above b > 0 case R < 1, meaning that the fourfold oscillation
pattern is maximally phase shifted by π/4 from the gap anisotropy cases with R > 1 in figure 1.
Needless to say, the sign b is arbitrary for a given material, but it is physically plausible that
b > 0 when a > 0 because in the angle-resolved DOS N(ϕ) ∝ 1/v(ϕ) the larger energy
gap (ϕ = 0) coincides with the larger angle-resolved DOS. This is indeed the case in boro-
carbides. Therefore, we can clearly distinguish the two anisotropy effects by measuring the
angle-dependent specific heat to monitor both the oscillation amplitude and its phase.

5. Point node gap

In this section we consider the point node gap structure. Among several possible point node
topologies we take up typical examples, the so-called axial state and ‘s + g’ model. The
former is known to be realized in the superfluid 3He A phase and the latter is a candidate for
boro-carbides [23]. We also consider the polar state with a line node for comparison.

5.1. Axial and polar gap function

The polar gap function has a horizontal line node in the crystal basal plane, while the axial
gap function is characterized by two pointlike nodes at the poles of the Fermi sphere. In polar
coordinates with ϕ and θ denoting polar and azimuthal angles, then the polar gap function is
presented as

�(ϕ, θ) = √
3 cos θ, (12)

and the axial gap function is presented as

�(ϕ, θ) = √
3/2 sin θ. (13)

The low temperature ZEDOS for these two gap functions is studied in detail in [3]. By
rotating the magnetic field in a plane that contains the c-axis, ZEDOS periodically changes.
The ZEDOS maximum appears for the field oriented along the gap node, and the ZEDOS
minimum appears when the magnetic field is directed along the gap maximum. Although the
field dependence of ZEDOS has already been presented in [3], for the purpose of this paper
we present these data in a slightly different form. Namely, we are interested in the amplitude
of the ZEDOS oscillation as a function of B . Therefore, in figure 3 the field dependence
of ratio R = N(E = 0, antinodal)/N(E = 0, nodal) is shown. The low field ratio differs
significantly for the axial and polar gap functions. The important point to notice is that in both
cases the ratio R, in the limit of low fields, differs from unity. This means that there is a finite
amplitude of ZEDOS oscillation as H −→ 0. This is in accord with the conclusion in the
previous sections.

5.2. ‘s + g’ model

It has been argued that the gap function in boro-carbides is a mixture of s-wave and g-wave
superconductivity with aptly chosen weighting factors so that the pairing potential �(ϕ, θ)

does not change sign on the Fermi surface but has pointlike zeros:

�(ϕ, θ) =
√

315

379
(1 − sin4 θ cos 4ϕ). (14)
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Figure 3. Ratio R = N(E =
0, antinodal)/N(E = 0, nodal) as
a function of magnetic induction for
polar and axial gap functions.

Figure 4. (a) Field dependence
of ZEDOS for two field directions:
nodal and antinodal when fields are
rotated in the basal plane. (b) Ratio
R = N(E = 0, antinodal)/N(E =
0, nodal) as a function of magnetic
induction for the ‘s + g’ gap function.

As in previous examples of anisotropic pairing functions, we choose the Fermi surface as
a sphere to see the effect of the gap structure on low temperature thermodynamics. As
we have already shown, even the anisotropy of the Fermi surface alone can account for
direction dependent specific heat. The effect of the Fermi surface disappears only in the
limit of low fields. Having in mind that band structure in boro-carbides is far from being
isotropic, this simple ‘s + g’ gap function on the Fermi sphere may not be an appropriate
model which can accurately estimate the amplitude of specific heat oscillation in boro-carbides,
but we can gain a qualitative tendency in this case. In figure 4(a) the field dependence of
low-temperature zero-energy DOS is shown for nodal and antinodal field directions. We
define the antinodal direction as a direction in the basal plane with maximum value of
superconducting gap. Magnetic induction B is scaled with Hc2(antinodal) and Hc2(nodal)
respectively. Note that Hc2(antinodal) > Hc2(nodal). As one may already anticipate,
the difference between the maximum ZEDOS (field along the antinodal direction) and the
minimum ZEDOS (field along the nodal direction) remains finite in low fields. Thus their
ratio N(E = 0, antinodal)/N(E = 0, nodal) �= 1. This is shown in figure 4(b). Noteworthy
is the comparison with the gap structure of the axial state �(ϕ, θ) = √

3/2 sin θ . Both the
axial state and the ‘s + g’ model have point-like nodes, while their field dependence of ZEDOS
is different. The γ (B) behaviour as a function of B is not governed only by the gap node
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Figure 5. Ratio of maximum
and minimum DOS as field rotates
conically around the c-axis for fixed
polar angle θ . The relative position
of magnetic field B and crystal c-axis
is shown in the inset of the figure.

topology, point-like or line-like nodes. It is not unique for all types of gap structures with
point-like (or line-like) nodes. It rather reflects the gap value on average, and it is rather
sensitive to the functional form of the gap function in the vicinity of the node.

6. Discussions on the specific heat experiments

In this section we discuss the angle dependent specific heat experiments on three materials,
LuNi2B2C, CeCoIn5 and Sr2RuO4, in the light of the present calculations.

6.1. Boro-carbides

Park et al [11] measure the angle-dependent γ (B) for LuNi2B2C and detect the fourfold
oscillations in various fields, identifying that the gap minimum is located in the [100] direction
of the tetragonal crystal because the oscillation maximum is in the [110] direction. This
identification is supported by our present result. The oscillation amplitude becomes smaller
as B decreases. However, it is rather difficult to judge whether the gap has a node or a
finite minimum gap from their experiment, where the detailed low field data are lacking. In
connection with other experiments which suggest a strong anisotropic gap [24] or s point node
gap [25] in this system, it is interesting to extend their measurement to lower field to determine
the precise gap structure.

Izawa et al [25] show in their angle-dependent thermal conductivity measurement that (1)
in the similar oscillation pattern the maximum appears in [110], coinciding with that in Park
et al, and (2) the oscillation amplitude diminishes when the field rotates conically out of the
basal plane. For the polar angle θ > π/4 it almost vanishes. They conclude a point node gap
located along the [100] direction. This assertion is based on a theoretical calculation [23] of
angle dependence of thermal conductivity. It may be informative in this connection to show
our result: we have also performed the calculation when the field rotates conically to check
how the oscillation amplitude varies as a function of the polar angle θ as shown in figure 5. It
is found that it decreases quickly as θ increases from zero for both the vertical line node and
the ‘s + g’ point node cases. In the vertical line node case the oscillation amplitude decreases
rapidly as θ increases, but it remains finite even for θ = 45◦. In the ‘s + g’ point node case the
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oscillation amplitude decreases gradually up to θ ∼ 30◦, then becomes diminishing for larger
angles. Because of these reasons it is difficult to distinguish these two cases by a conical field
rotation of specific heat experiment.

6.2. CeCoIn5

Aoki et al [12] perform the angle dependent specific heat experiment in this system,observing a
substantial oscillation amplitude when rotating the field within the basal plane of the tetragonal
symmetry crystal. In the oscillation pattern the maximum occurs for the [110] direction. This
suggests the dxy gap function because the oscillation amplitude stays constant towards the
lowest fields. This conclusion appears to be inconsistent with the angle-dependent thermal
conductivity experiment by Izawa et al [26], who conclude the dx2−y2 gap function. Note,
however, that their data themselves exhibit the oscillation maximum for the [110] direction,
consistent with Aoki et al [12].

6.3. Sr2RuO4

According to Deguchi et al [13], who measure the angle-dependent specific heat on this system
by rotating the field within the basal plane of the tetragonal crystal, the fourfold oscillation
amplitude decreases below a threshold field ∼0.3 T and changes its sign near Bc2 ∼ 1.5 T. The
existence of the threshold field is in accord with our calculation, where the gap structure has a
finite minimum gap, definitely excluding the vertical line node in the so-called main γ band.
(We cannot say anything about the possible horizontal line node [27].) An interesting point in
this system is the fact that we know accurately the Fermi velocity anisotropy in the γ band,
where the larger Fermi velocity is directed to [110]. Since the observed oscillation maximum
occurs along [110], the experiment unambiguously excludes the oscillation due to the Fermi
velocity anisotropy. Combining these two facts, we conclude that there exists an anisotropic
gap structure with a finite minimum in the basal plane of the main γ band in Sr2RuO4. We
cannot commit ourselves on further conclusions concerning the minor α and β bands or the
horizontal line node based on the existing data by Deguchi et al [13].

7. Summary and conclusion

In this paper, we have calculated the zero-energy density of states in the mixed state at
low temperature by employing quasi-classical Eilenberger formalism, which is valid for a
wide variety of superconductors. We have focused on the angle dependence of the zero-
energy density of states, which is directly measured through a specific heat experiment as the
Sommerfeld coefficient, for superconductors with both nodal and nodeless gap structures.

We have demonstrated that the specific heat angular dependence provides useful
information concerning the gap structure, namely, the position of the node or the gap minimum
on the Fermi surface and also the existence or non-existence of the gap node. Furthermore,
we give information to distinguish two sources of the anisotropy, either due to the gap itself or
due to the Fermi velocity of the band structure. These proposed methods, we believe, add yet
another dimension to firmly establish the gap structure.

A few examples studied here do not exhaust all possibilities for superconducting gap
function. Neither can all kinds of different Fermi surface structures be covered. Nevertheless,
from the comparison of field dependence of ZEDOS in (a) nodal and (b) fully gapped
anisotropic superconductors, one can conjecture a behaviour that is common for each group
of superconductors. In nodal superconductors the specific heat oscillation amplitude persists
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down to very low fields. In contrast to this behaviour, for fully gapped superconductors, as
one decreases magnetic field the oscillation amplitude gradually diminishes. To remind the
reader again, only low temperature specific heat is discussed here.
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Matter 16 L13

[13] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002 (Preprint cond-mat/0404070)
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